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INTERNATIONAL REVIEWS IN PHYSICAL CHEMISTRY, 1990, VOL. 9, No. 1, 1-27 

Variational and perturbative descriptions of 
highly vibrationally excited molecules 

by EDWIN L. SIBERT I11 
Theoretical Chemistry Institute and Department of Chemistry, 

University of Wisconsin-Madison, Madison, Wisconsin 53706, U.S.A. 

Two theoretical approaches to the calculation of the highly excited vibrational 
states are reviewed. Particular emphasis is placed on the choice of coordinates, and 
the ramification this choice has on the quality of the ensuing calculations. The 
essential ingredients of variational calculations are highlighted via four illustrative 
calculations. The standard approach of using a product basis of harmonic 
oscillators based on a rectilinear normal mode framework is discussed using the 
work of Maessen and Wolfsberg. The improvements to this basis are presented 
within the context of thecalculation of Romanowski et al. in which a self-consistent- 
field basis is employed. Bond-angle coordinates and the advantages they provide 
are demonstrated. This discussion focuses on the efficient algorithms which Carter 
and Handy developed for evaluating eigenvalues and eigenvectors of tri- and 
tetra-atomic molecules. For yet larger amplitude motion, associated with ‘floppy’ 
molecules, the combination of Jacobi coordinates and the discrete variable 
representation are reviewed in the context of a study of the eigenstates of 
HCN/HNC by BaBk and Light. Perturbative approaches are also considered. In 
particular, the application of canonical Van Vleck perturbation theory in a 
superoperator framework using curvilinear coordinates is reviewed. This section 
draws chiefly from the work of Sibert, McCoy, and Fried and Ezra. 

1. Introduction 
The accurate description of highly excited vibrational states is an essential step 

towards furthering the chemist’s ability to  model theoretically the dynamics and 
spectroscopy of polyatomic molecules as well as to elucidate the properties of potential 
energy surfaces, the features of which control dynamics and spectroscopy. Some 
important examples for which the nature of highly excited states is relevant include the 
Rice-Ramsberger-Kassel-Marcus (RRKM) theory of kinetics (Robinson and 
Holbrook 1972), multiphoton excitation (King 1982, Quack 1982), overtone-induced 
reactions (Crim 1984), mode-selective effects (Bloembergen and Zewail 1984, Butler 
et al. 1986, McIlroy and Nesbitt 1989) and collisional energy transfer (Haub and Orr 
1987, Parson 1989). For this reason a great deal of interest is and has been directed 
towards developing new methods of obtaining vibrational eigenvalues and 
eigenfunctions. The objective of this review is to bring together some of the novel 
theoretical advances which have been achieved in this area of research. 

Almost all of the early investigations of molecular rotation-vibration spectra were 
made within the normal mode framework. This is not a surprising result, given the 
computational tools available during the first half of this century. Normal modes 
provide an excellent description of semi-rigid molecules at low levels of excitation. In 
this energy regime the molecular vibrations behave as weakly coupled harmonic 
oscillators; hence the perturbative analyses, based on a zero-order picture of uncoupled 
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2 E.  L. Sibert III 

harmonic oscillators, such as those found in the early work of Darling and Dennison 
(1 940), produce relatively accurate expressions for the eigenvalues, 

E =c hwi(ni +$) + xij(ni + &)(nj +$), (1) 
i i >  j 

as a function of the vibrational quantum numbers, with a minimal amount of 
computation. 

At higher levels of excitation, the accuracy of these expressions breaks down. The 
perturbative approach must be pushed to higher order in order to remedy this 
shortcoming. One practical problem in this regard is the vast amount of tedious algebra 
required for the higher order perturbative expansions. Algebraic manipulation 
routines such as MACYSMA, have proven to be very effective tools in this regard 
(Swimm and Delos 1979, Jaffe and Reinhardt 1979,1982, Shirts and Reinhardt 1982, 
Sage and Child 1989); so too have C (Fried and Ezra 1987, 1989) and FORTRAN 
(Sibert 1986, 1988a) codes. Another difficulty with perturbative approaches is that an 
expansion of the potential in a Taylor series about the equilibrium configuration has an 
unsatisfactory radius of convergence, this leading to asymptotic behaviour in the 
perturbative expansions. This difficulty can in part be overcome through the use of 
curvilinear coordinates rather than the rectilinear normal coordinates which have been 
traditionally used in perturbative calculations. Two alternatives for the bond extension 
coordinate, A R ,  are either Simons-Parr-Finlan (SPF) coordinates, pi = ARi/Ri, 
(Simons et al. 1973, Carney et al. 1978), where Ri is the bond length, or Morse 
coordinates, yi = [ 1 - exp (-a, ARi)] (Coolidge et al. 1938, Efremov and Zhirnov 1980, 
Sage and Williams 1983, Halonen and Carrington 1988). Not only can the potential be 
expressed in these coordinates as a low-order Taylor series expansion, but the full 
Hamiltonian can be expressed as a low-order expansion of these coordinates and 
conjugate momenta (Cooper 1987); hence these coordinates provide an attractive 
alternative representation in which to formulate perturbation theory, as shown by 
Baggot (1987) and McCoy and Sibert (1989). Although the latter part of this review will 
address some recent progress which has extended the applicability of perturbation 
theory, the larger fraction of it focuses on some of the other methods which have been 
developed in order to overcome the difficulties of perturbation theory. 

A partial list of alternative methods includes semiclassical quantization, Monte 
Carlo, and linear variational methods. Of the semiclassical methods, two of the most 
promising have recently been reviewed and hence will not be considered here. They are 
adiabatic switching, reviewed by Skodje and Cary (1988) and Reinhardt (1989), and 
spectral quantization, reviewed by Ezra et al. (1987). From scaling arguments, Monte 
Carlo methods have the brightest outlook for extensions to many degrees of freedom. 
For tri- and tetra-atomicmolecules, however, this method (Caffarel et al. 1989) does not 
achieve the level of accuracy provided by variational calculations, for a given amount of 
computational effort. For these reasons this review focuses on the linear variational 
method. 

The structure of the review is as follows. We begin with a description of variational 
approaches in normal coordinates, bond-angle coordinates, and Jacobi coordinates. 
For each of these coordinates, we focus on the relative advantages offered by each 
representation as well as the quality of the various approximations that are often 
applied. Our discussion of the normal coordinates borrows both from the excellent 
review of Carney et al. (1978) and a study by Maessen and Wolfsberg (1984) in which 
many of the ideas presented in the review of Carney et al. are applied to H,CO 
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Highly vibrationally excited molecules 3 

vibrations. The work of Maessen and Wolfsberg is then contrasted to the more recent 
study of Romanowski et al. (1985) who employ a more sophisticated, iteratively 
obtained self-consistent-field basis (SCF) set. 

The discussion of variational calculations is extended to bond-angle coordinates, 
which are more appropriate for describing the large-amplitude vibrations associated 
with CH and OH stretches which are currently receiving considerable experimental 
attention (Crim 1984). The discussion here draws from the work of Carter and Handy 
(1 986) who have determined some very efficient means of evaluating the eigenvalues of 
tri-atomic molecules. The extensions of these ideas to larger systems is also presented. 
These approaches are then compared to the discrete variable representation (DVR). 
Batik and Light (1986, 1987) have used the DVR in their studies of ‘floppy’ molecules 
which possess more than one minimum on the potential energy surface. The results of 
these studies are extremely encouraging. 

As stated above, the final section of this paper reviews perturbative approaches of 
obtaining eigenvalues and spectroscopic Hamiltonians. The work of Sibert (!988b, 
1989), Sibert and McCoy (1989), and Fried and Ezra (1988,1989) is reviewed. Here the 
discussion focuses on the way in which canonical Van Vleck perturbation theory is 
used to transform to Hamiltonians for which the eigenvalues can be readily obtained. 

2. Variational approaches 
There are six central steps in most variational calculations. They are the following. 

(1) Choose a coordinate system. 
(2) Determine the kinetic energy contribution to the Hamiltonian. 
(3) Obtain the Born-Oppenheimer potential energy. 
(4) Decide on a set of basis functions so that the Hamiltonian can be represented as 

a matrix. 
(5)  Evaluate the matrix elements. 
(6) Diagonalize the matrix. 

There are many options for each of the above steps, all of which are dependent on each 
other. We shall consider in detail some specific choices that recent researchers have 
made, as well as the rationale for these choices. There are, however, two steps we will 
not address. The first of these, the determination of Born-Oppenheimer potential 
energy surface, is perhaps the most difficult of the six. These calculations constitute a 
very active area of research among ab initio quantum chemists. It should be noted that 
many of the methods employed today in vibrational variational calculations, including 
the basic method itself, have originated from this field of research. Throughout the 
remainder of this review, we assume that the potential energy surface is a given 
quantity. We will also not review the advances that have been made in the sixth step, as 
this is more of a numerical problem. Partly for this reason and partly due to the very 
recent review we will not discuss the progress made by Wyatt and co-workers (1989) in 
developing the Lanczos algorithm. Iung and Leforestier (1 989) recently demonstrated 
the power of this technique in their study of the determination of a potential energy 
surface for CD,H. 

The organization of this section is based on the choice of coordinate systems, the 
first of the above six steps. We will consider three of the many possible options, these 
being normal coordinates, bond-angle coordinates, and finally Jacobi coordinates. 
Although the inclusion of rotational degrees of freedom is not stressed in this review, 
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4 E.  L. Sibert I I I  

high-lying rotational states provide a wealth of information; moreover, full rotation- 
vibration calculations have been performed in all three of these coordinate systems. 

2.1. Normal coordinates 
Owing to the success of normal coordinates in perturbative approaches, these 

coordinates were first used in variational calculations of molecular vibrations. 
Although the inclusion of rotations is beyond the scope of this review, the normal mode 
description has the additional advantage of allowing for a simple embedding of the 
body-fixed coordinate system. Eckart (1935) has given a prescription for this 
embedding which provides an excellent separation of the rotational and vibrational 
degrees of freedom for semirigid molecules that spend most of their time near the 
equilibrium configuration. The utility of the Eckart condition derives from the fact that 
both it and the normal coordinates are conveniently expressed as linear combinations 
of the Cartesian coordinates. 

Wilson and Howard (1936) and Darling and Dennison (1940), with further 
simplifications by Watson (1968), made use of this linear relation in their derivation of 
the full rotation-vibration Hamiltonian for a nonlinear molecule. The pure vibrational 
contribution to the kinetic energy operator has the form 

In equation (2) pap is an effective reciprocal inertia tensor and p is its determinant. Both 
these terms depend on the instantaneous molecular geometry. The ‘vibrational angular 
momentum’, nu, is a bilinear function of the normal coordinates, Qi, and their conjugate 
momenta, P* Its precise functional form depends on the molecular equilibrium 
configuration and the quadratic force constants. The final term in equation (2), which 
depends only on the coordinates, is the Watson term, 

This term may be thought of as a mass-dependent contribution to the potential energy 
function. 

The variational evaluation of the eigenfunctions entails rewriting the kinetic energy 
operator of equation (2) plus the potential operator as a matrix using a suitable basis. 
Much of the research here has followed the early work of Whitehead and Handy (1975, 
1976) in which the basis functions have the following production form: 

Here the Onk(Qk) are the well known solutions to the harmonic oscillator associated with 
the kth degree of freedom. These functions are conveniently expressed as a function of 
the dimensionless coordinates 

Qk = (2n~~/h)”’Q~. (5 )  
Having chosen a basis, the task of setting up the Hamiltonian matrix is reduced to 

evaluating the elements of this matrix by means of either numerical or analytical 
integration. Although the second term of f -  can be evaluated exactly, the remaining 
two as well as the potential contribution, require the calculation of N-dimensional 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
4
5
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



Highly vibrationally excited molecules 5 

integrals corresponding to the N internal degrees of freedom. In the approach of 
Whitehead and Handy (1976) these integrals are evaluated using Gauss-Hermite 
quadrature. Each of the N-dimensional integrals can be expressed as a product of one- 
dimensional integrals each of which have the following form 

where Ai  are the points and Qki are the weights. The second expression indicates that 
f(Qk) is evaluated at the M points 

It is instructive to consider the number of points required for an accurate 
representation of the above integral. The numerical quadrature of equation (6) is exact 
if f (Qk)  can be written as a polynomial in Qk of degree less than or equal to 2M - 1. In 
evaluating the one-dimensional potential matrix between the states with quantum 
numbers nk and mk, f ( Q k )  is the product of three terms, the potential and two Hermite 
polynomials of order nk and m,; hence, equation (6) will be accurate if the potential can 
be expressed as a polynomial of order (2M - 1) - (nk + mk). 

The advantage of the above quadrature method is that it obviates the need to 
express the potential explicitly as a function of the normal coordinates. This-is 
expedient, since potentials often are represented as functions of the internal bond-angle 
coordinates, either as a Taylor series expansion about an equilibrium configuration or 
as a more sophisticated global fit (Murrell 1984). With equation (6), one only needs to 
evaluate the potential at specific values of the normal coordinates. Using the linear 
transformation between normal and Cartesian coordinates, the values of these latter 
coordinates are readily determined for any value of the normal coordinates. The 
analytic expressions of Hoy et al. (1972) are then applied to determine the values of the 
bond-angle coordinates for a given value of the Cartesian coordinates. Hence it is 
straightforward to evaluate numerically the potential at the quadrature points. 

Maessen and Wolfsberg (1984) have clearly demonstrated both the utility and the 
limitations of the quadrature scheme in their calculations of the vibrational states of 
H,CO. This work carefully demonstrated the sensitivity of the eigenvalues on both the 
number of quadrature points and the number of basis functions used in the full 
diagonalization. One must be careful with regard to these issues, since both the size of 
the basis and the number of quadrature points for a molecule with six degrees of 
freedom is intractable unless some approximations are made. 

Using the quartic, internal coordinate force field of Tanaka and Machida (1977) 
and using a relatively small basis set consisting of states whose harmonic contribution 
to the vibrational Hamiltonian was less than 6 0 0 0 ~ m - ~  above the zero-point energy, 
these workers showed that at least 6-8 quadrature points were required for each of the 
degrees of freedom in order to obtain eigenvalues to within 4 cm- of what they would 
be if an exact numerical integration scheme were used to obtain the Hamiltonian 
matrix. If a bigger basis has been chosen, more quadrature points would have been 
required. 

In choosing their basis set, Maessen and Wolfsberg considered two criteria which a 
basis function had to satisfy in order to be included in the basis set. They first set an 
upper limit on the total number of quanta, N,,, =Zini of the product wavefunction of 
equation (4). Secondly, they set an upper limit on the energy above the zero point, EMAX, 
as calculated in the normal mode limit. Although similar results were obtained, the 
second criterion was found to be superior. This is evident from the results of table 1, in 
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6 E. L. Sibert I I I  

Table 1. Influence of choice of basis set on the A, energies (cm-I). 

5803.2 
7332.7 
7579.4 
8155.3 
8322.6 
8671.4 
8850.8 
9092.7 
9347.1 
9808.2 
9893.4 

10013.6 
10022.6 
10243.4 
10190.0 
10452.5 
10458.0 

... 

... 
10766.2 

11131.6 
11068-6 
11348.8 

... 

... 

... 
11571-0 

Set 11s Set 1118 

58164 
7332.0 
7582.3 
8 1544 
8321.8 
8674.2 
88501 
9118.8 
9372.3 
9668 1 
9857.4 

19923.2 
10039.9 
10076.1 
10505.4 
10379.8 
10797.4 
105753 
10697.6 
10725.2 
10859- 1 
11 115.7 
11204.4 
11378.1 
11438.6 
11492.5 
11553.7 

5803-2 
7328.3 
7576-2 
81541 
8321.7 
8671.4 
8849.7 
9091.5 
93456 
9664.7 
9842.7 

19917-0 
19998.5 
10 104.5 
10187.7 
10426.6 
10453.8 
10574.0 
10697.5 
10743.9 
108590 
11 109-1 
11168-7 
1 1369.0 
11433.7 
11490.4 
11 549-7 

t Set I has 36 basis functions chosen by the excitation criterion NYAX = 3. 
$ Set I1 has 36 basis functions chosen by the energy criterion EMAx =6000cm-'. 
§Set 111 combines set I and I1 and has 45 basis functions. 

which the results of these two calculations are compared to the results of a 
diagonalization for which a basis function was included in the basis set if either of the 
two criteria was satisfied. 

In their largest calculation, six quadrature points were used for each of the modes, 
except the out-of-plane bend, Q4, and asymmetric bend, Qs, where 8 quadrature points 
were used. States were included in the basis set if either NMAX = 5 or EMAX = 9000 cm- ', 
this providing a relatively small basis of 196 functions by today's standards. With this 
basis only the lowest four or five states of the A, symmetry block appeared to be 
converged to within 0.5 cm- '. Apparently, one must go to extremely large basis sets in 
order to obtain accurate energies for highly excited states, if one chooses to use basis 
functions of harmonic oscillators. 

These authors also examined the contributions to the eigenvalues of various 
components of the vibrational Hamiltonian associated with equation (2). For example, 
they numerically showed that the leading contribution of the Watson term is an overall 
shift of 3 cm- ' to the energy levels. This result also indicates that the normal coordinate 
dependence of pap in equation (2) makes at most a minor contribution to the overall 
eigenvalues. 
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Highly vibrationally excited molecules 7 

Using these ideas, Romanowski et aZ. (1985), hereafter referred to as RBH, also 
calculated eigenvalues of the highly excited states of H,CO using a modified ab initio 
potential of Harding and Ermler (1985). This potential is a full quartic expansion. The 
bends are described with the usual bend extension coordinates, but the stretches are 
modelled with SPF coordinates. RBH used a superior basis in their calculations, whose 
development we now describe. Before doing so, it should be noted that this more 
sophisticated treatment of the wavefunctions is made tractable only through some 
simplifying assumptions as to the form of the Hamiltonian operator. The first of these is 
to neglect the functional dependence of pap on the normal coordinates. This obviates 
the need of a quadrature scheme for the kinetic energy matrix elements, since the p .  can 
readily be expressed as a sum of separable terms, each of which can be evaluated as a 
product of at most four one-dimensional integrals. Furthermore, the solutions to these 
integrals are analytic. The evaluation of the potential matrix elements was simplified by 
expressing the potential as a Taylor series expansion in the normal coordinates 
through fourth order, 

In this form, the potential is also expressed as a sum of separable terms. Although the 
second of these approximations is not as good as the first (Sibert 1989), combined they 
simplify the evaluation of the Hamiltonian matrix to the extent that more flexible forms 
of the product basis functions may be considered. 

RBH consider two forms of the vibrational basis functions both of which have the 
product form of equation (4). The first of these options follows the work of Carney and 
Porter (1 974), where the On, are eigenfunctions of the uncoupled anharmonic oscillator 
(UAO) Hamiltonian 

hk" =!Tpt 4- f,kQ," 4- hkkQk3 4- f,kkkQ,", (8) 

which includes those contributions to the full Hamiltonian consisting of the one-body 
terms and not just the quadratic contributions to h:, as in the Whitehead and Handy 
approach (1975,1976). In order to distinguish this basis from that used by Maessen and 
Wolfsberg, we use the notation of RBH and denote this basis OKAo. The basis can be 
further improved by using self-consistent field (SCF) wavefunctions, O :?, which are 
iteratively obtained solutions to 

where hicF is a function of the quantum numbers ni- The additional contribution to this 
Hamiltonian is obtained by averaging V', which includes all the terms in the full 
Hamiltonian other than the one-body terms, over the remaining five degrees of 
freedom. Both the SCF wavefunctions and the UAO wavefunctions are conveniently 
expressed as linear combinations of the previously defined harmonic oscillator 
functions On,. For example, 

where the equality holds only in the limit that N ,  approaches 00. The method 
developed by RBH for setting up the full Hamiltonian matrix, using both the UAO and 
SCF wavefunctions, follows the standard approaches as discussed by these authors. 
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8 E. L. Sibert 331 

The difficult steps were deriving the SCF wavefunctions (i.e. carrying out the necessary 
integration to derive It:'') and, secondly, evaluating the matrix elements of the 
Hamiltonian matrix. The integration required in both these steps was made tractable 
by expressing the Hamiltonian as a sum of separable terms. As an elegant alternative, 
Ratner and Gerber (1986) incorporate semiclassical ideas in order to evaluate the 
expectation value of equation (9) without ever explicitly determining the wave- 
functions, 0:;'. 

There were several noteworthy results found by RBH. The first of these, shown in 
table 2, is that if configuration interaction is neglected (i.e. the eigenvalues are 
approximated as the diagonal elements of the full Hamiltonian matrix), then the SCF 
wavefunctions provide a superior representation, giving a zero point energy 100 cm-l 
lower than that found using the UAO wavefunctions. The differences between these 
two representations were, however, noticeably diminished when configuration 
interaction was included. This is evident from a comparison of the UAO-CT and SCF- 

Table 2. Convergence of the UAO-CI and SCF-CI energies (cm-') for adjusted potential 
for H2C0. 

~ 

State Symmetry UAOt UAOXIf UAOCIg SCF-f SCF-CIt 
- 

5880.1 
8756.2 
7643.8 
7424.5 
7085.3 
8960.4 
7161.5 

115815 
10519.8 
10300.5 
9961.3 

11836.4 
10037.5 
9395.4 
9188.1 
88490 

10724.0 
8925-1 
89692 
8629.6 

10504.7 
8705.8 
8306.9 

10165.5 
8366.6 

12105.7 
1024 1.7 
8454.5 

5777.2 
8558.9 
7524.5 
7277.6 
6937.8 
8634.9 
7022.9 

11278.8 
10307.5 
10048.5 
9693-3 

113668 
9785.3 
9256.4 
9017.7 
86769 

10361-9 
8780-4 
8775.4 
8433.0 

10128.6 
8478.8 
8093.0 
9776.8 
8193.5 

11472.1 
98640 
8266-9 

5777.1 
8558-4 
7524.2 
7277.2 
69375 
8634-0 
7022.6 

11270.0 
10306.1 
100455 
9690.9 

1 1354.3 
978 1-6 
9255.8 
9016.7 
86760 

10358.1 
8779.6 
8774.4 
8432.0 

10123.9 
8477.2 
8092.0 
9772.3 
81923 

11457.5 
98605 
8265.9 

5796.3 
8610.5 
7546.8 
7303-0 
6947-8 
8640.1 
7044.7 

11370.8 
10358.3 
10082.5 
9716-0 

11459.7 
9824.8 
9281-9 
9050.3 
86904 

10386.1 
8790.3 
8807.0 
8449.4 

10099-2 
85585 
8107.1 
9732.4 
8201.1 

11408.7 
9847-0 
8299.0 

5777.2 
8558.8 
7524.5 
7277.5 
6937.8 
8635.0 
70229 

11274.9 
10306.7 
10048.2 
96920 

1 1366.8 
9783.7 
92562 
9017.3 
86765 

103622 
87805 
8774.8 
84326 

10128.9 
8478.3 
8092.3 
9777.5 
8193.0 

114766 
98641 
8266.4 

t The UAO and SCF results were obtained using a simplified form for the kinetic energy 

f The basis functions were chosen by the excitation criterion NMAx = 5. 
0 The basis functions were chosen by the excitation criterion NMA, = 8 with the exception 

operator, T, =+Z:,Pi (cf. equation (2)). 

that n5 and n6 were only considered up to 5. 
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Highly vibrationally excited molecules 9 

CI results of table 2 which were obtained from a diagonalization with a moderate size 
basis. These results are displayed in columns four and seven. This basis included those 
products states for which NMAX = 6, yielding 3€3,140,169 and 266 basis states of A,, A,, 
B,, and B, symmetry respectively. Also shown in table 2 in the fifth column are the 
results of a larger UAO-CI calculation where 827,488,526 and 794 basis states were 
included in each of the above symmetry groups. Here NMA, = 8, with the exception that 
rz5 and n6 were considered up to 5 (for states of A, and B, symmetry). The close 
similarity of the moderate size UAO-CI and SCF-CI results relative to the larger size 
UAO-CI calculation lead RBH to conclude that for a given size basis set, the energies 
obtained in these two representations are of roughly equal accuracy. 

Table 2 includes states with a total of two or less quanta of excitation. Of the 14 
states of A, symmetry, which are shown there, eight of them appear to be converged to 
within 0.5cr1-~  of the exact eigenvalues for the SCF basis set. This is a marked 
improvement over the four or five similarly converged states that Maessen and 
Wolfsberg obtained with a basis set of 196 harmonic oscillator functions. 

Another important result of this study was that the first overtones of the states 
corresponding to large amplitude CH stretches required at least N,= 10 in order to 
obtain the eigenvalues ofequation (8) to within 1 an- accuracy. The ability to describe 
the stretches as linear combinations of harmonic oscillator functions rapidly 
deteriorates as one goes to yet more highly excited stretching states. Fortunately, there 
exists an alternative description, bond-angle coordinates, which is ideally suited for just 
this type of motion. 

2.2. Bond-angle coordinates 
In recent years, researchers have found that there exists a very attractive alternative 

framework for describing and modelling vibrational dynamics and spectroscopy. This 
perspective has the localized stretching and bending oscillators as the zero-order 
modes (Sage and Jortner 1981, Crim 1984, Child and Halonen 1984). These ideas were 
motivated early on by noting that, whereas the expression for the eigenvalues of 
equation (1) often fails at high energies, for high-frequency vibrations such as CH and 
OH stretches the energy levels can still be fitted with the relatively simple expression 

E = C h o i ( n i + ~ ) + C ~ i i ( n i + ~ ) ) 2 .  
i i 

The surprising feature here is that this expression is appropriate for describing the 
vibrations of an isolated, diatomic molecule, this implying that the high-frequency CH 
and OH stretches are vibrating independently of each other and therefore can be 
treated as localized oscillations. 

There are two reasons for this localization. The normal modes arise as a result of the 
off-diagonal quadratic coupling terms between the local modes. These coupling terms, 
which are normally responsible for the strong mixing of the local modes, have little 
effect in coupling oscillators with disparate frequencies (Wilson et al. 1955). 
Consequently, in molecules such as HDO, where the three local modes have distinctly 
different frequencies, the normal and local modes are similar. Of more interest are 
situations where the normal and local modes are different, as in H,O. Here the two 
local OH oscillators have the same frequency; hence, to a good approximation they 
strongly mix to form the symmetric and antisymmetric normal modes, despite the 
relatively small magnitude of the quadratic coupling terms. It turns out, however, that 
because OH oscillators are so anharmonic, an OH stretch with three quanta of 
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10 E. L. Sibert I I l  

excitation has a frequency which is sufficiently diminished from the frequency 
associated with the zero-point energy that the quadratic coupling no longer leads to 
mixing of the OH oscillators. As a consequence of this detuning, the OH stretches 
provide a good zero-order description for highly excited states. Conversely, the 
anharmonicity of the OH oscillators leads to extensive mixing of the normal modes. 
For states with most of the excitation in a single OH bond, the local mode provides a 
superior representation. 

The emergence of the local mode picture has been enhanced by the additional fact 
that these modes are the ones most commonly observed with the thermal lensing and 
photoacoustic techniques (Sage and Jortner 1981) which are commonly used to probe 
highly excited states. Not only do these states carry considerable oscillator strength in 
these experiments, they are also reasonably uncoupled to the remaining states, as the 
spectral energy level pattern of equation (11) suggests. Levine and Berry (1989) have 
argued that these relatively unmixed, localized states are more visible spectroscopically 
than their strong mixed counterparts whose spectral signatures are often washed out 
due to the mixing and sharing of oscillator strength with other background states. 
Consequently local modes have been the subjects of considerable experimental scrutiny 
(Crim 1984). 

The ramifications of these observations encouraged workers to develop variational 
calculations in these alternative coordinates. As before, the first step in this process is 
the derivation of the kinetic energy operator. One route to doing this is to use the 
Podolsky transformation (1928). Meyer and Giinthard (1968) and Pickett (1972) 
derived the rotation-vibration Hamiltonian in generalized curvilinear coordinates. 
The pure vibrational contribution to the kinetic energy operator is 

TMGP = 4 PTGP + V'(S). (12) 

It has been written in terms of the momenta, p i  = - ih alas, and the G-matrix elements. 
If the internal coordinates, Si, are the bond-angle extension coordinates, ARi, then the 
G,  are just the well known Wilson G-matrix elements (Wilson et al. 1955). The second 
term, V'(S) is a potential energy term which results from transforming the kinetic 
portion of the Hamiltonian from Cartesian into internal coordinates. It has the form 

where 

g=- III 
IGI 

is the ratio of the determinants of the G-matrix and the moment of inertia matrix. The 
appropriate volume element for integration over the internal coordinates of the above 
Hamiltonian is dV=dS1 dS, . . . dS,. 

The V'(S) term is usually small relative to the other potential energy terms, and can 
often be neglected. If this approximation is made, the Hamiltonian for a specific system 
may be obtained trivially by looking up the appropriate functional form of the G- 
matrix elements (Wilson et al. 1955). 

The somewhat awkward form of equation (13) is a result of using the Podolski 
transformation. Handy (1987) and Sutcliffe (1982) have shown that analytic expressions 
for the kinetic energy operator can be derived in a more straightforward fashion. They 
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Highly vibrationally excited molecules 11 

start with the well known form for the kinetic energy operator expressed in Cartesian 
coordinates and then apply the chain rule in order to re-express this operator in the 
internal coordinates. All that is needed in order to carry out this step is to express both 
the Euler angles and the internal coordinates as function of the Cartesian coordinates 
and vice versa. Although the algebra which is required for these transformations is 
cumbersome, it can be readily handled using algebraic manipulation routines (Handy 
1987). 

Wallace (1975) was one of the first researchers to take advantage of the above bond- 
angle Hamiltonian in his investigations of the stretching dynamics of H,O and CsHs. 
In this early work the effects of the bending motions were neglected. The zero-order 
Hamiltonian consisted of N uncoupled Morse oscillators, and the primitive product 
basis was defined accordingly. The exciting result of these studies was that, despite the 
complete neglect of all potential coupling between the stretches (i.e. the stretches were 
only kinetically coupled), the resulting eigenvalues agreed closely with the observed 
transition frequencies. Since that time, this model and more sophisticated versions of it 
have been applied to a large number of molecular systems, leading to novel insights into 
the nature of highly excited polyatomic molecules. 

Before discussing some of the approximations that have been made, however, we 
first review an 'exact' method of obtaining the eigenvalues of an ABA triatonic 
molecule. The vibrational Hamiltonian for this molecule is 

where 

The G, elements are functions of the internal coordinates and the atomic masses. 
Introducing the notation, zi = (&)-I and PAB = mAmB/(mA + mB), one obtains the 
following expressions: 

1 z;+z~ 2z,z,cose. 
GI1 = G22 = -; GS3=- - Y 

(17) 
PAB PAB mB 

GI,=-; G13=-- ; G23=--. 
cos e z2 sin 8 z, sin 8 
mB mB mB 

After considerable algebraic manipulation, I/' simplifies to 

h2 h2 
2mB 8 Y'(R,, R 2 , 8 ) = - - z 2 ~ 2 ~ ~ ~ 8 - - ~ 3 3 [ 1  +cosec28]. 

The reader will note that, whereas Y' is generally small, it diverges at B = R .  If one is 
considering systems with large-amplitude bending motion, this singularity must be 
removed. Sutcliffe (1983) showed that this could be achieved by rewriting the above 
Hamiltonian as a function ofz = cos 8 and choosing dR, dR, dz rather than dR, dR, d8 
as the volume element. 

Having obtained the Hamiltonian, the next step is to choose a set of basis functions. 
There are many ways to proceed at this juncture, and only a few of them will be 
considered here. It should be emphasized that all these approaches have a common 
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12 E. L. Sibert I I I  

goal, to minimize the number of basis functions used in the full matrix diagonalization 
without making the evaluation of the Hamiltonian matrix unduly difficult or time- 
consuming. The diagonalization should be the time intensive part of the variational 
procedure. The work of Carter and Handy (1986) provides a nice illustration of these 
concepts. 

Carter and Handy, building on the earlier ideas of Lai and Hagstrom (1975), 
optimized their product basis functions by considering the full vibrational 
Hamiltonian as consisting of three zero-order anharmonic oscillators whose 
Hamiltonians are 

where Re is the equilibrium bond length and i = 1 or 2. The eigenfunctions of the above 
one-dimensional Hamiltonians are then used as a basis in the full calculation. This 
approach is the local mode equivalent of RBH using basis functions which are products 
of the O,”,””. To obtain these eigenfunctions or so-called pre-diagonalized functions, 
Carter and Handy diagonalized the above Hamiltonians in a basis of ‘primitive’ 
functions. The choice of these functions is not central to this procedure, since they are 
only used for diagonalizing the one-dimensional bend and stretch Hamiltonians. A 
convenient choice for these functions is Legendre polynomials for the bend and Morse 
functions for the stretches. If the barrier for the bending Hamiltonian is particularly 
high, the more flexible Jacobi basis used by Johnson and Reinhardt (1986) is an 
attractive alternative. Hamilton and Light (1986) have used multicentred expansions 
consisting of distributed Gaussian basis functions, 

(pk(Ri) = (2Ak/7~)’’~ exp C - Ad&- RiJ21, (21) 

centred at the points Rik. The evaluation of matrix elements is rapid since this localized 
basis requires very few quadrature points. Finally with some modifications, the above 
equations can also be solved by direct numerical integration as in the work of Cropek 
and Carney (1984). 

The eigenfunctions 4:) (where i =  1,2 corresponds to the two stretches and i= 3 
corresponds to the bend) of Hstretch and Hbend may then be further improved by carrying 
out the first step of an SCF iteration. Here the new one-dimensional bend Hamiltonian 
is 

and the stretch functions are calculated similarly. For simplicity of notation we refer to 
these further-improved functions using the same notation. It should also be noted that, 
for molecules with C,, symmetry, there is an additional important step in minimizing 
the size of the Hamiltonian matrix, which is to symmetrize the stretching wavefunctions 
by taking the appropriate plus and minus linear combinations. 

Having obtained the pre-diagonalized basis, the matrix elements for the kinetic 
energy operator are easily calculated, since these terms may be written without 
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Highly vibrationally excited molecules 13 

approximation as the sum of product terms. The more difficult quantities to calculate 
are potential energy matrix elements, 

( YmI VI ‘Y,> = (4:!(Rl)4~~(R~)4E~(6)I VId;)(R 1 ) d ~ ) ( R & L ~ ) ( ~ ) > *  (23) 
These were evaluated with the Harris-Engerholm-Gwinn (HEG) quadrature scheme 
(Harris et al. 1965) combined with the more recent work of Schwenke and Truhlar 
(1984). The first step in this scheme is the evaluation of the points. These are obtained by 
diagonalizing the ( N 3  + 1) x ( N 3  + 1) bend position matrix 0, whose elements are 

dz 4E)04!,3), m, n = 0,1,. . . , N ,  (24) L1 om, = 

and the matrices Ri ( i  = 1,2) with elements 

= dR, 4:)(Ri)Ri&)(Ri), m, n= 0,1,. . . , Ni. 1: 
The resulting eigenvalues of 0 and Ri are the quadrature points. The weights 
corresponding to these points are obtained using the method of Schwenke and Truhlar 
(1984) in which the weights w:,, as the notation suggests, depend on the particular 
matrix element being calculated. The weights for the bend are solutions to the following 
simultaneous equations, 

N3 

1=0 
($:)1(6- 6e)k14f’> = C ~:, , (6 , ,  -6Jk, k=O, 1,.  . . , N3.  (26) 

The weights for the stretches are calculated similarly. 

exactly as 
This scheme leads to the powerful result that the matrix elements may be expressed 

if the potential can be also exactly represented as a Taylor series expansion of the form 

Clearly, fewer points are required for this quadrature scheme than for the Gauss- 
Hermite quadrature of equation (6). Using these ideas, as well as some more 
sophisticated basis sets, Carter and Handy have shown that these methods provide a 
very efficient route to calculating the highly excited vibrational states of tri-atomic 
molecules. 

The use of bond-angle coordinates has been applied successfully to larger systems. 
This has been made possible by the decoupling of high-frequency CH and OH 
variations relative to the lower frequency bending modes, so that undercomplete bases 
still provide accurate descriptions of the highly excited states. Following the early work 
of Wallace (1979, Halonen (1989) has recently reviewed the use of these ideas to model 
a wide variety of local mode molecules. 

One of the distinct advantages of the bond-angle representation is that, unlike the 
normal coordinates, the potential may often be accurately expressed as a sum of 
separable terms. The key to doing this is to express the potential not as a Taylor series 
expansion of the internal extension coordinates, but rather to introduce some 
alternative definitions. Two well known examples for alternative stretching 
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14 E.  L. Sibert 111 

coordinates are the Simons-Parr-Finlan (SPF) coordinates (1973), pi = ARi/Ri, 
where AR, is a bond extension coordinate, and the Morse coordinates, 
y, = [ 1 - exp ( - aiARi)]. These coordinates (Halonen and Carrington 1988) contain an 
additional fitting parameter, a,, referred to as the Morse parameter. Insomuch as the 
Morse potential has been shown to describe accurately the stretching potentials for 
many molecules, and since this potential expanded in a Taylor series in yi has the trivial 
form, D,y?, (D, is the dissociation energy) it is expected that one-dimensional stretching 
potentials can, in general, be written as low-order polynomial expansions in these 
coordinates. Recent progress has also been made in regard to bending degrees of 
freedom. In particular, Carter and Handy (1987) have introduced the coordinate, 

8= A8 + &(A8)z + (29) 
where A6 = 6 - 6, is the bending extension coordinate of an ABC triatomic molecule. 
These workers showed that the bending contributions to the potential can be written 
accurately as a quartic expansion in 8. In order that the potential has the correct 
boundary conditions, there is a single constraint between the two additional 
parameters, pi (i.e. W//ldBI,=,=O). This leads to the requirement that d8/a81e=, = 0. An 
alternative approach which will also insure the correct boundary conditions is to 
expand the potential in a Taylor series in Az = z - z ,  = cos 8 - cos 8,. 

Expressing the potential energy as a low-order Taylor series expansion in these 
alternative coordinates has provided accurate representations of realistic potential 
energy surfaces; these methods are often adopted by ab initio quantum chemists as the 
most convenient way to parameterize the potential. This approximation obviates the 
need for numerical quadrature and allows for very rapid evaluation of the potential 
energy matrix elements. Halonen and Carrington (1988) have recently applied these 
ideas to an investigation of the highly excited states of H,O, as have Carter and Handy 
(1988) in their studies of acetylene. In an earlier work Carter and Handy (1984) used a 
six-dimensional quadrature scheme to evalute the potential matrix elements, but found 
this to be an extremely slow process. In the more recent work, the quartic force field was 
used in order to avoid the slow quadrature step. It should be noted that Carter and 
Handy employed the exact form for the kinetic energy operator as opposed to 
neglecting various contributions to it as in the work of Gribov and Khovrin (1975). 
Although the form of this operator is quite complicated, it too can be written as a sum of 
separable terms. 

Finally it should be mentioned that the use of bond-angle coordinates in no way 
precludes an embedding of a body-fixed reference frame in order to study rotations. 
Although it is not easy to employ the Eckart frame, several other options for the 
embedding have been put to practical use by Tennyson and Sutcliffe (1986), Sutcliffe 
et al. (1987) and Carter and Handy (1987). In addition to showing clearly the utility of 
the bond-angle coordinates for studying rotations, one of the important features of 
these studies has been to demonstrate that one should be careful to construct a basis set 
which avoids any singularities that are often present in the rotation-vibration 
H amiltonian. 

2.3. Jacobi coordinates and the discrete variable representation 
Although the method of Carter and Handy (1986) provides an efficient method for 

calculating highly excited states of many tri-atomic molecules, difficulties are 
confronted when there is more than a single minimum on the potential energy surface, 
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Highly vibrationally excited molecules 15 

such as is found for the HCN molecule. For ‘floppy’ systems such as this, the bond- 
angle coordinates, appropriate for describing HCN vibrations, are inappropriate for 
describing HNC vibrations. Jacobi coordinates, originally developed in the context of 
scattering theory, provide an attractive alternative. This is not only due to the 
simplicity of the kinetic energy operator, 

* 

(30) 
h2 a2 h2 a2 h z (  i 2  

I i ) a  a T - - - - - - . - - - - -  ___ - (1 - 2 2 )  -, 
J -  2p1 aR2 2p2 ar2 2 p l R  p2r2 az a2 

where p1 = MAMB,-/(MA + MBJ and p2 = MBM,-/(MB + Mc); it is also a consequence of 
the fact that the vibrational wavefunctions are more separable in these coordinates. 
These are the BC (CN) bond length, r, the distance between the A (H) atom and the 
centre of mass of the BC diatom, R, and the angle, 0, between the diatom axis and the 
vector connecting the H atom to the centre of mass of the diatom. 

The new choice of coordinates does not preclude the use of the diagonalization 
scheme discussed above. One can define three one-dimensional Hamiltonians as above 
in order to define the pre-diagonalized basis functions (bf) where i = 1-3 corresponds to 
the R, r and 0 degrees of freedom respectively. If the potential contribution to the 
Hamiltonian is sufficiently small, as it is for many van der Waals molecules, then the 
contraction of the size of total basis set achieved by using pre-diagonalized bend 
functions rather than Legendre polynomials is minimal. In this situation it is easier to 
follow the standard approaches of scattering theory and simply to use the Legendre 
polynomials as the bend basis. In contrast, if there is an appreciable barrier to rotation, 
and if there exists more than one minimum on the potential energy surface such as there 
is in HCN/HNC, then some modifications must be made in order to contract the size of 
the overall basis. These changes result from the fact that the bend functions may be 
localized in different regions of configuration space. Some of these functions, denoted 
$$), are localized about 0 =IT, and others, denoted 4:) are localized about 0 = 0; finally 
other bend functions, which are above the barrier to isomerization, are, as expected, 
delocalized. Consequently, if the stretch basis functions, #il), are defined as the 
eigenfunctions of the one-dimensional stretching Hamiltonian, 

then this basis will accurately describe the CH stretches, but will do a poorer job in 
describing the NH stretches. Conversely, if the stretch basis is chosen to be 
eigenfunctions of 

then this basis will describe accurately the NH stretches. 
In situations such as this it is fruitful to further improve the stretching basis by 

means of a self-consistent field (SCF) procedure, such as that of RBH or Bat36 et al. 
(1986). Another alternative is to use an adiabatic basis set, where the bend is treated as 
the slowly moving variable as Johnson and Reinhardt (1986), Romanowski and 
Bowman (1984), and Certain and Moiseyev (1987) have done. Ba% and Light (1986, 
1987) have advanced another powerful method for the solution of ‘floppy’ molecules, 
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16 E. L. Sibert I I l  

which has many of the advantages of the SCF and adiabatic wavefunctions while 
retaining the advantages of an extremely rapid quadrature scheme. 

The key difference between this approach and that of Handy and Carter (1986) is 
that it uses a discrete variable representation (DVR) in contrast to the so called finite 
basis representations (FBR) with which this review has so far been concerned. An 
example of these two representations has already been provided in the discussion of the 
HEG quadrature scheme. The functions 4:) constitute a FBR for the bend, whereas the 
eigenfunctions of the 0 matrix provide a DVR. In order to illustrate the beauty of this 
technique we briefly review the essential ideas, and then compare the form of the 
Hamiltonian matrix derived from this method to that which would be obtained for the 
same problem in a FBR. 

The vibrational Hamiltonian in Jacobi coordinates (cf. equation (30)) may be 
expressed in the general form 

H =  h(R, r) + G(R, r)jQ + V(R, r, 0). (33) 
In the traditional coupled channel approach to scattering theory the eigenfunctions of 
this Hamiltonian are expressed in the form 

Jmal 

j = O  
Y(R, r, e) = 1 fi(R, r)Pj(cos 0). (34) 

Rather than follow this approach using the Legendre basis, these functions are 
transformed to a representation labelled by a discrete set of angles, namely the discrete 
variable representation. This basis is obtained from the Legendre basis using the 
orthogonal transformation 

q, = [(2j+ 1)/2]1~20,'/2Pj(z,), (35) 
where z, = cos 8, are the points and o, are the weights of the (j,,, + 1)-point Gauss- 
Legendre quadrature. This basis leads to j,,,+ 1 coupled equations in the DVR: 

[h(R,r)I+G(R,r)Ttj2T+TtV(R,r, 0)T-EI]f(R,r)=O. (36) 
Here the matrices I and j2 are the (j,,, + 1) x (Jmm + 1) identity matrix and the diagonal 
matrix of eigenvalues [ j (  j +  l)] respectively. The matrix TtV(R, r, 0)T is block 
diagonal in the DVR; its elements have the form 

[TtV(R, r, O)T],,, = d,,,V(R, r, z,). (37) 
With this simplification, each of the j,,, + 1 equations constitutes a set of effective two- 
dimensional oscillators describing the stretches, where the effective stretch Schrodinger 
equation is 

Ch(R r) + V ( R  r, za)- tJL(R, r)=O- (38) 
The two-dimensional stretching potential is found by taking a slice through the full 
potential at an angle z,. The solution of equation (38) for each channel may be obtained 
in any number of ways. Light and Hamilton (1986) have found that the DGB basis 
provides an excellent choice of primitive functions in which to express the fb(R,r). 
Having obtained these radial basis functions, the full pre-diagonalized product 
wavefunctions have been determined. 

As in the approach of Maessen and Wolfsberg (1984) where the EMAX criterion was 
used to decide whether to include a product wavefunction in the basis set, a similar 
approach is employed in the DVR approach (BaEi6 and Light 1986,1987, Whitnell and 
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Highly vibrationally excited molecules 17 

Light 1989). Here the number of stretching functions is tailored to the associated bend 
function. This is neatly achieved in the DVR by including only those stretching 
functions whose energies are less than some specified energy, ERAp 

An advantage of the DVR representation is in setting up the Hamiltonian matrix. 
The coupling between the different c1 channels (i.e. the coupling between states with 
different bend quanta) is entirely due to the kinetic term, G(R, r)Ttj2T. Furthermore, the 
simple product form of this coupling term facilitates the evaluation of the coupling 
matrix elements. 

Using the DVR approach, BaEi6 and Light accurately calculated the lowest 110 
levels HCN/HNC using 652 basis functions. The basis included 45 DVR quadrature 
points and ERAY = 20 OOO cm-'. Most of these 110 levels were converted to 1-3 cm-l. 

It is worthwhile to compare the above equations to the FBR equivalent. An 
excellent set of basis functions can be obtained with the bend functions, $;), whose 
derivation was discussed above. Using these functions, a set of coupled equations 
analogous to those of the DVR (cf. equation (36)) is obtained where now the T matrix is 
the matrix which transforms between the primitive, Legendre polynomials and the 4;). 
The stretching Hamiltonians are quite different from those of the DVR. The FBR leads 
to an effective stretch Schrodinger equation for each channel which is obtained by 
averaging the full Hamiltonian over the bend function associated with that channel. In 
contrast, in the DVR the stretch basis has the same form as it would for an adiabatic 
basis set. This strongly suggests that, for systems where the bending motion is 
significantly lower frequency than the stretches, the DVR will provide a superior 
stretch basis. From a quadrature point of view, the set of coupled equations obtained in 
the FBR has the disadvantage that TtV(R, r, 6)T is no longer block diagonal; hence 
obtaining the stretch Hamiltonian will require a more complicated quadrature scheme 
than is needed in the DVR. 

It should be noted, however, that the FBR representation does have the possible 
advantage that there will be fewer overall coupled equations in the FBR, since the 4;) 
are obtained from the full one-dimensional bend Hamiltonian, whereas the DVR basis 
is chosen to diagonalize only the potential contribution to the pure bend Hamiltonian. 

To summarize, the DVR representation provides a powerful variational technique 
for studying the dynamics of 'floppy' molecules. One central advantage of the DVR 
approach is that the basis is the product of the adiabatic stretch states, evaluated at the 
Gauss-Legendre quadrature points, and the DVR bend functions. A second advantage 
is that the coupling in the DVR representation is through the kinetic energy operator 
which has a simple product form, so that at most a two-dimensional quadrature scheme 
is required in order to evaluate the Hamiltonian matrix. Recently these ideas have been 
extended to include rotations (Tennyson and Henderson 1989, Moiseyev and Certain 
1989). 

Normal coordinates, bond-angle coordinates and Jacobi coordinates each have 
their range of applicability. The organization of this section may be thought of as a 
progression from semi-rigid to floppy molecules. Therefore, to conclude this section, it is 
appropriate to briefly mention the work of Hutson and Jain (1989), who have very 
recently developed a method for calculating bound state energies within the framework 
of hyperspherical coordinates. These coordinates are particularly well suited for 
weakly bound van der Waals trimers, where one must consider the full permutation- 
inversion symmetry of the molecule (i.e. all the atom-diatom configurations are 
energetically accessible). The advantage of the hyperspherical coordinates is that they 
give equal emphasis to each of the members of the trimer under particle permutation. 
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18 E. L. Sibert 111 

Hutson and Jain have used hyperspherical harmonics to obtain a set of coupled 
second-order differential equations in the hyper-radius, which is then solved exactly 
using coupled channel techniques. 

3. Perturbative calculations 
We have seen above that the exact quantum mechanical solutions to highly excited 

vibrational states, using standard variational methods, provide accurate results for tri- 
atomic molecules. For tetra-atomic molecules, however, the enhanced basis sets make 
the calculations of all but the lowest states considerably more difficult; hence 
alternative routes to their solutions are currently being explored and developed. One 
route that Sibert et al. (1988b, 1989) and Fried and Ezra (1987, 1988, 1989) have been 
developing is the application of high-order quantum mechanical canonical Van Vleck 
perturbation theory (hereafter referred to as CVPT). This theory has been applied to 
many polyatomic molecules and has been found to be an important technique for the 
determination of eigenvalues and spectroscopic Hamiltonians (Nielsen 195 1). Fried 
and Ezra (1987) have also taken advantage of the similar forms of CVPT and classical 
Dragt-Finn perturbation theory (Dragt and Finn 1976,1983) in order to elucidate the 
connections between quantum mechanical and semiclassical perturbation theory. 

Computationally it is convenient to apply this theory in a framework which uses 
harmonic oscillators as the zero-order Hamiltonian. This approach has the obvious 
drawback that the perturbative expansions diverge quite rapidly for very large 
amplitude motion. Hence, its use is not recommended for floppy molecules. 
Nevertheless, CVPT works surprisingly well in energy regimes for which perturbation 
theory is not expected to be useful (Sibert 1988b, McCoy and Sibert 1989). In this section, 
we focus primarily on the work of Sibert, and Sibert and McCoy, who have studied the 
vibrations of H,O, SO,, and H,CO using CVPT. The complementary work of Fried 
and Ezra (1989) will also be discussed. We begin by reviewing the goals of the 
perturbation theory. 

3.1. Spectroscopic Hamiltonians 
For many molecular species, the vibrational energy levels have been parameterized 

as a function of quantum numbers using expressions of the form of equation (1). From a 
perturbative point of view, it is surprising that both this expression, which is based on 
second-order perturbation theory, and more generalized versions of it, have such a wide 
range of applicability, extending to energy regimes well beyond those for which second- 
order perturbation theory is expected to give practical results. 

The Hamiltonian, corresponding to equation (l), which is often referred to as a 
spectroscopic Hamiltonian, evidently is 

A = c h o @  +$) + Xij(lii +$)(ij +i). 
i i2 j 

(39) 

It is written explicitly as a function of the number operators, i i ln)  =afa,ln) = niln), 
where In) = In,, n,, . . . , nN)  is a product wavefunction for the N degrees of freedom, and 
ni is the number of quanta in the ith oscillator. Equation (39) is correct through second 
order; in general there are additional cubic, quartic, and yet higher order terms in iii. 
The objective of CVPT is to transform a vibrational Hamiltonian, expressed in either 
normal coordinates or curvilinear coordinates, via a series of similarity 
transformations so that the transformed Hamiltonian has the form of equation (39). 
Before discussing the details of these transformations, it should be noted that this latter 
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Highly vibrationally excited molecules 19 

form is appropriate only if there is no significant configuration interaction between any 
of the zero-order states. Roughly speaking, this implies that for equation (39) to be 
valid, no coupling matrix elements between two zero-order states can be comparable to 
the energy difference between the two states. If there is significant configuration 
interaction between groups of zero-order states then one must use perturbation theory 
to transform to more general forms than that of equation (39). 

The water molecule provides a simple example of a system for which it is 
appropriate to use degenerate perturbation theory. Here the bend frequency, w,, is 
roughly half the symmetric stretch frequency w,, which in turn is approximately equal 
to the antisymmetric stretch frequency w3. Consequently, if the eigenfunctions of the 
full vibrational Hamiltonian are expressed as a linear superposition of the zero-order 
harmonic oscillator basis states In,, n,, n3), one expects that these eigenstates will 
contain significant admixtures of the nearly degenerate, zero-order states In,, n,, n3),  
In, & 1, n, f 2, n,), and In, k 2, n,, n3 f 2), rather than consisting of a single leading 
component. One therefore constructs a spectroscopic Hamiltonian-with a form which 
explicitly allows these sets of states to couple, rather than try to decouple them 
perturbatively. 

Following the work of Benedict et al. (1956), the appropriate form for the 
spectroscopic Hamiltonian of H,O, through second order in perturbation theory, is 

Iz =I hWi(fii  +$) + 1 Xij(Ai ++)(Aj +$) 
i i >  j 

+ kl,,(afa,a, +ala&zJ)+ k,133(afafa3a3 +a,alat,at,). (40) 

The first two terms, which also appeared in equation (39), are purely diagonal 
contributions. Off-diagonal couplings are present in order to allow for the admixture of 
states discussed above. This coupling results from the last two terms in equation (40): 
the k, , ,  term represents the 2 : 1 Fermi resonance interaction between the symmetric 
stretch and the bend, and the kl 133 term leads to the 2 : 2 Darling-Dennison resonance 
coupling between the symmetric and antisymmetric stretches. In contrast to the 
Hamiltonian matrix associated with equation (39), which is diagonal, equation (40) 
expressed in matrix form is block diagonal, and each block is defined by n, = 2(n1 + n3) 
+ n,. Equivalently, the operator, ii, = 2(ii1 + A3) + A,, commutes with the Hamiltonian 
of equation (40). 

In general, CVPT is applied in order to transform canonically the Hamiltonian to a 
representation where the solutions may be obtained using a significantly smaller basis 
set than is needed in the original representation. In the previous example, we indicated 
one such form, the essential feature of which is the transformation to a Hamiltonian 
which is block diagonal through a,given order in perturbation theory. Descriptions of 
alternative forms of the transformed Hamiltonian may be found elsewhere (Sibert 
1988a, b Fried and Ezra 1987). There are several features of the transformations which 
facilitate the usage of CVPT. The first of these is the choice of an appropriate set of 
coordinates, the second is the use of a super-operator framework. 

3.2. Curvilinear coordinates 
In order to apply CVPT in a super-operator framework it is essential that the 

Hamiltonian be expressed as a polynomial expansion of the raising and lowering 
operators. The most convenient route to doing this is to expand the potential V, the 
G-matrix elements, and V’ of equation (12) in a Taylor series about the equilibrium 
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20 E.  L. Sibert I I I  

configuration is a given set of coordinates. The Taylor series expansion coefficients may 
be obtained using algebraic computer language programmes (Handy 1987), finite 
difference techniques (Sibert 1989), or in terms of the elements of the nonlinear 
transformation matrix between the rectilinear normal coordinates and the internal 
coordinates (Green et ul. 1987). The zero-order contribution to this Hamiltonian, 
is chosen to consist of N uncoupled harmonic oscillators. If the cubic terms and 
quadratic coupling terms are grouped into I%’), the quartic terms into #’), and so 
forth, then the Hamiltonian has the form 

A= p) + A f p  + p f i ( 2 )  + . . . . (41) 

The harmonic oscillators of A(’) are then used to define raising and lowering operators, 
which, when substituted, lead to a Hamiltonian of the form 

Here V ,  contains all the higher-order contributions to the full Hamiltonian of 
equation (41). 

For a given order of Taylor series expansion, the quality of the potential energy fit 
depends sensitively on the choice of coordinates. This is also true for the G-matrix 
elements and V’. To illustrate this, consider the one-dimensional stretch Hamiltonians 
in the bond, Morse and SPF coordinates, denoted R, y, and p respectively: 

i i 2  a2  
&=---+V(R), 2m dR’ 

(W2 Eiy = - g (; (1 - y)’ ;) + V( y) - -, 8m 

(43) 

(44) 

The bottom two Hamiltonians were obtained from the first by a straightforward 
application of the chain rule. The volume elements for these Hamiltonians are dR, dy 
and dp respectively, as is required with a zero-order picture consisting of harmonic 
oscillators. Although the kinetic energy operators are more complicated for the SPF 
and Morse coordinates, as can be seen in the coordinate dependence of the G-matrix 
elements, this dependence can be expressed as a low-order polynomial expansion. The 
fact that the Morse oscillator may be represented as a low-order polynomial in the form 
of equation (44) was first noted by Cooper (1987). 

Both the Morse coordinates and SPF coordinates have better limiting behaviour 
than do the bond-stretching coordinates for expressing the G-matrix elements as low- 
order polynomial expansions. For a tri-atomic molecule, all the G-matrix elements (cf. 
equation (17)) may be expanded exactly using at most a quartic expansion in the SPF 
coordinates. The alternative coordinates for the bending motion offer some of the 
advantages that have been found for the stretching coordinate. The previously 
mentioned coordinate, Az, has the advantage of removing singularities (at 8 = n) in V‘, 
so that this contribution may accurately be represented as a low-order polynomial 
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Highly vibrationally excited molecules 21 

expansion. Additionally, the G-matrix elements can often be accurately written as a 
low-order polynomial expansion in Az. 

Sibert and McCoy found that the quality of the CVPT results differed markedly for 
the above Hamiltonians of equations (43H45) only if they are expanded to a given 
order, and the remaining terms were neglected. If, however, the Hamiltonian is 
expanded to sufficient order, so that no terms in the Hamiltonian are neglected, then 
the results are very insensitive to the particular choice of coordinates. For example, an 
nth-order perturbative transformation requires that the potential be expanded to at 
least n + 2 order if one is using bond-angle coordinates. The central advantage of the 
SPF and Morse coordinates, therefore, is that it is computationally easier to expand the 
initial Hamiltonian in terms of them. 

Finally, given a choice of coordinates in which to expand the Hamiltonian in a 
Taylor series, any linear combination of these coordinates will provide equally accurate 
expansions. In light of the recent advances with respect to the bond-angle coordinates, 
one might consider using coordinates, which to lowest order, are linearly related to 
them (i.e. using the SPF coordinates or the Morse coordinates themselves). However, 
Lehmann (1983), Kellman (1985), and Mills and Robiette (1985) have shown that there 
is an algebraic equivalence between the local mode and normal mode representations; 
hence, in contrast to a variational calculation, there is little to be gained by using bond- 
angle coordinates. In fact, since all the quadratic terms can be included in A('), normal 
modes generally have been foundto converge faster (Sibert and McCoy 1989, Baggot 
1987) using CVPT. 

3.3. Canonical Van Heck perturbation theory 
The transformations to the spectroscopic Hamiltonian are implemented by a series 

of canonical transformations of the form 

As the form of these transformation implies, first 

is calculated through nth order, than Z?, is likewise calculated as 

This process continues n times until the spectroscopic Hamiltonian is obtained from 

exp {~A~[S("),I} Rnp1 =R,. (49) 

The computations which are needed for each of these transformations are very 
similar, so only the first (cf. equation (47)) is considered. I?, is determined by expanding 
the exponential in equation (47) using the well known Campbell-Hausdorff formula, 
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22 E.  L. Sibert I l l  

and then expanding H and k, in powers of A as in equation (41). Equating powers of A, 
the standard expressions (Kemble 1937) are obtained 

QO) = 

Kc,‘) = A(’) + [S‘” fi(O)], 

~\Z’=H‘2’+[S(l) fi“’] --[S(l), 2 2  [S(”,fi(O)]], 
2! 

and so forth. For the general case of expressed in normal form, 
N 

a choice of 

leads to 

The primes and double primes refer to restricted summations, where X,,, = Xk + X;. 
Equivalently, the terms in Kil) include a subset of the terms in fi(’). 

The form of k is predicted by the choice of terms to be included in 9’). This choice is 
very flexible; a usual option is, if there are no degeneracies in I?“), to include in S(l) all 
the terms in IF1). Consequently Kc,l)=O. If there are degenerate or nearly degenerate 
states, then the coupling between them is included in Ki’). In the example of H,O 
discussed above, the 2: 1 Fermi resonance term was included in k\’) while all other 
terms were transformed away. In general, it is desirable to transform away as many of 
the terms as possible while avoiding a divergent perturbative expansion. 

Recently Fried and Ezra (1989) have implemented a useful alternative to the above 
methods for constructing the transformed Hamiltonian. In their work all the coupling 
terms except those which can be expressed entirely as functions of the number 
operators are transformed away. As a result their transformed Hamiltonian is diagonal. 
If there are resonances, this expansion in the number operators diverges. To put the 
Hamiltonian in a useful form it must be ‘reconstructed’. To illustrate this process, Fried 
and Ezra presented the following simple example involving two coupled states. 

Consider two zero-order states whose energies are a k 6. If the interaction matrix 
between these two states is 1, then the exact eigenvalues, E , ,  may be readily determined 
by solving the secular equation, 

( E -  a)2= A 2 +  6, (55) 

to obtain 
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Highly vibrationally excited molecules 23 

This expression can be contrasted to the result of Rayleigh-Schrodinger perturbation 
theory, where the form of the perturbative solution is equivalent to that which is 
obtained by expanding the exact expression for the energy in powers of 1, 

E,=a+d 1 + - - g  ... . [ ] (57) 

The radius of convergence of this perturbative series is found by considering the 
singularity structure of the eigenvalues in the complex 1 plane. There are two branch 
points for the square root, located at A= +id. This implies that, for values of 1 with 
absolute value greater than 6, the perturbation series will diverge. 

The key to reconstruction is to note that the secular equation (55) is an entire 
function of 1; it has no singularities anywhere in the complex 1 plane. Hence, if the 
secular equation is rewritten as 

( E  - E + ) ( E  - E - ) = O ,  (58) 

and the polynomial expansion, equation (57), is inserted for E + ,  then this expansion will 
no longer diverge. In fact, since this expression is quadratic in 1, all the higher order 
terms must cancel exactly. 

For more complicated systems where M states are nearly degenerate the simple 
product of equation (58) is replaced with the secular equation 

where Ei is the ith root of the secular equation, and 1 is again the perturbation 
parameter. Using the CVPT algorithms discussed above, the E i  are obtained as a series 
expansion in 1 to a given order, n. The product of equation (59) will contain terms up to 
n x M ;  however, only the terms up to order n are retained. Fried and Ezra have applied 
this method to several vibrational problems, comparing their result to Pad6 
approximations and almost degenerate perturbation theory results. Reconstruction is 
found to be more accurate than the former and almost equivalent to the latter. This 
method does have the distinct advantage that, whereas Sibert (1988) must entirely re-do 
the perturbative expansion if the final form of the transformed Hamiltonian is found to 
be divergent, only the reconstruction must be re-done in the approach of Fried and Ezra. 

Both Sibert and McCoy (1989) and Fried and Ezra (1987) have applied CVPT to 
study the vibrations of SO,. The former workers used a Hamiltonian, where the G- 
matrix elements, the potential, and I/' were expanded through quartic terms using SPF 
coordinates for the stretches and Az to describe the bends. The latter workers used the 
rectilinear normal modes with a potential expanded as a quartic expansion in these 
coordinates. Both calculations yielded eigenvalues to within 0.1 cm-' of the exact 
variational energies for energies as high as those equivalent to having ten quanta of 
excitation in the bend. 

Although CVPT might be expected to provide excellent results for the semi-rigid 
SO, molecule, it is less likely to be expected to do so for the H,O molecule. McCoy and 
Sibert (1989) modelled the vibrations of H,O using the force field of Halonen and 
Carrington (1988) which is expressed as a restricted quartic expansion in terms of the 
Morse coordinates for the stretches and the traditional bend extension coordinate for 
the bend. CVPT was carried out using normal coordinates constructed as linear 
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24 E.  L. Sibert 111 

combinations of these coordinates. The eigenvalues E(n) of nth-order block diagonal 
spectroscopic Hamiltonians (n, is a constant of the motion) are compared to the results 
of a fully converged variational calculation in table 3. For high levels of perturbation 
theory, the agreement with the exact variational calculation is extremely good, the 
exceptions occurring for those states with large bend excitation. It should be noted that 
a state with eight quanta of excitation in the bend has an energy about that of the 
barrier height found at the linear molecular configuration. Both the SO, and H,O 
calculations are extremely fast. The sixth- and eighth-order perturbative results took a 
total of 2.5 and 60min on a VAX 8650. 

Sibert (1989) has applied CVPT to study the vibrations of H,CO. This study used 
the quartic force field of RBH, where the stretches were modelled using SPF 
coordinates. In this study both the internal coordinates and rectilinear normal 
coordinates were used. Selected eigenvalues of block diagonal spectroscopic 
Hamiltonians are shown in table 4 for various levels of perturbation theory. Here each 
block was defined by the constant of motion, n, = 2(n, + n5) + n2 + n3 + n4 + n6, where n, 

Table 3. Differences (m- ') between results of normal mode CVPT calculations on H,O and 
results from a variational calculation. 

State? n, AES(2) AE(4) AE(6) AE(8) 4 

(0,O)l 1 -1.85 -0.26 - 0.05 
(0,0)2 2 -657 -1.31 -0.33 
(1,O)'O 2 -1.26 -0.01 000 
(1,0)-0 2 -029 -0.01 0.00 
(0,0)3 3 -17.30 -4.47 - 1.45 
(0,0)4 4 -38.86 -12.44 -4.96 
(0,0)5 5 -79.04 -30.78 -14.80 
(1,0)'3 5 -20.97 -4.12 - 1.71 
(1,0)-3 5 -1364 -3.02 -0.93 

(2,0)-1 5 -8.44 -0.51 -0.18 
(0,0)6 6 -105.80 -71.37 -40.72 
(1,l)l 5 -50.46 -0.50 - 0.06 
(3,0)+4 10 -39.46 -6.97 - 3.46 
(3,0)-4 10 -36.59 -6.49 - 3.30 
(2,1)+4 10 -39.81 -5.91 - 2.44 
(4,0)+2 10 -2207 -5.90 - 3.23 
(4,0)-2 10 -21.81 -5.27 - 2.84 

(2,O)'l 5 -9.80 -0.60 - 0.20 

(5,O)'O 10 -50.56 -0.54 0.20 

(3,1)+2 10 -37.60 -4.56 - 1.10 

(5,0)-0 10 -51.06 -0.56 019 
(2,1)-4 10 -24.34 -4.30 - 1.06 

(3,1)-2 10 -29.71 -4.36 - 1.37 
(4,l)'O 10 -33.79 -2.14 0.03 
(4,1)-0 10 -35.42 -2.33 0.07 
(2,2)2 10 -1749 -4.27 -0.84 

(3,2)-0 10 -2698 - 4 5 5  -0.51 
(3,2)+0 10 -36.65 -2.66 - 0.02 

t We use local mode notation to assign the states. 
$ AE(n) = E -  nth-order perturbative energy. 
Q E = result of variational calculation. 

- 003 
-0.17 

0.00 
0.01 

- 0-75 
- 2-74 
- 9.07 
-0.88 
- 0.49 
- 0.08 
- 0.07 
- 27.89 

0.00 
- 0.75 
-073 
-054 
- 1.74 
- 1.59 
-0.14 
-016 
-0.13 
- 0.29 
- 0.30 

0.13 
0.17 
0-12 
0.19 
0.06 

1595.07 
3 15 1.45 
3657.12 
3754.98 
4666.41 
6 135.44 
7550.94 
8268.40 
8365.33 
8761.31 
8810.22 
8898.84 
9000.43 

16522.22 
16536.83 
16790.79 
16830.83 
16832.16 
16893.01 
16893.49 
16947.46 
17225.1 1 
17322.18 
17458.01 
17497.70 
1753 1.40 
1775 1.03 
1793634 
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Highly vibrationally excited molecules 25 

Table 4. Comparison of select rectilinear, E,  and curvilinear, E,, eigenvalues (cm-') of H,CO 
obtained using CVPT. 

State n, Symmetry E,(4)$ EA6) E,(2) E,(4) 

1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
- 

11661 
1250-5 
1505.7 
1747.4 
2323-4 
24262 
2497.8 
2667.8 
2727.1 
2780.4 
2845.1 
2905.9 
3001.7 
3009-8 
3245-8 
3475.9 
801 1-3 
8019.2 
8029.1 
80275 
8078.9 
8115.4 
8 1 30.7 
81398 
8220.1 
8277.3 
82807 

11661 
1250.5 
1505.7 
1747.4 
2323.2 
2426.2 
24917 
2667-7 
2726-6 
2780-6 
2845.3 
2905.8 
3001.9 
3009.8 
3245.8 
3476.0 
8008.9 
8021.5 
80263 
8027.4 
80772 
8114.8 
8128.9 
8141.6 
82207 
8278.1 
8281-4 

11664 
1250.2 
1505-5 
1747.4 
2325.0 
2426.2 
24963 
2667.4 
2723.6 
2778.8 
2843.1 
29063 
3002.8 
3010-2 
3245.9 
34761 
8003.6 
8012.2 
8026.0 
8037.7 
8063.2 
8109.2 
8123.6 
8132-3 
821 1-4 
8272.0 
8282.3 

1166-1 
12505 
1505-7 
1747-4 
2323.3 
2426-2 
2497.7 
2667.9 
2726.9 
2780.6 
2845.3 
2905.9 
3001.8 
3009.9 
3245.9 
3476.1 
80103 
8021.5 
8028-0 
8029.1 
8078.3 
8114.9 
8129.3 
8 140.9 
8220.9 
8278-2 
8281.1 

t States have not been assigned, due to the large degree of mixing. 
$ E(n)-nth-order perturbative result. 

and n5 correspond to the high-frequency CH stretches. The agreement between the two 
coordinate systems is quite good, as is the agreement between higher orders of 
perturbation theory. 

4. Concluding remarks 
This review has considered both variational and perturbative treatments of highly 

vibrationally excited states. The choice of coordinates was seen to be a central 
ingredient of these calculations. Since the time required for a matrix diagonalization of 
an N x N matrix scales as N3,  there is a strong impetus to make judicious choices for 
coordinate systems and basis functions in order to minimize the size of the basis set. 
This review has considered several of these choices. 

In all the variational approaches discussed in this review, product basis sets were 
used. This need not be the case (Carter and Handy 1986), but it is computationally very 
convenient for the evaluation of the Hamiltonian. In the quest for a minimal product 
basis set representation for a vibrational system, it should always be recalled that the 
matrix diagonalization should be the time intensive part of the total calculation and not 
the setting up of the Hamiltonian matrix. Quadrature schemes as well as the form of the 
kinetic and povential energy operators play a key role in this context. 
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26 E.  L. Sibert I I I  

As in electronic structure calculations, the quality of the product basis can be 
dramatically improved by using SCF functions rather than some primitive basis 
function. There is an additional dimension, however, in vibrational problems. Here 
there is a great deal of flexibility in choosing a coordinate system in which to construct 
the product basis for the SCF calculation. Although this review was by no means 
complete in this regard, normal coordinates, bond-angle coordinates, and Jacobi 
coordinates were discussed. 

Recent advances in the use of CVPT to calculate the eigenvalues of highly excited 
states were also reviewed. The use of curvilinear coordinates, such as SPF and Morse 
coordinates, was found to be a very efficient way to express the vibrational 
Hamiltonian as a low-order polynomial expansion in the coordinates and conjugate 
momenta. This fact, combined with a super-operator approach, which obviates the 
need to evaluate large Hamiltonian matrices, provides an efficient way of carrying out 
perturbation to high order. Several examples were included to illustrate the accuracy of 
this method. 

Acknowledgments 
I should like to thank D. Colbert for helpful comments on the preparation of this 

manuscript. Acknowledgment is made to the National Science Foundation Grant No. 
CHE-8713749 for the partial support of this work. 

References 
BAEIC, Z., GERBER, R. B., and RATNER, M. A., 1986, J .  chem. Phys., 90, 3606. 
BAEIC, Z., and LIGHT, J. C., 1986, J .  chem. Phys., 85, 4594; 1987, Ibid., 86, 3065. 
BAGGOTT, J. E., 1987, Molec. Phys., 62, 1019. 
BAKHRAKH, V. L., and VETCHI", S. I., 1972, Optika Spectrosk., 32, 14. 
BENNEDICT, W. S., GAILAR, N., and PLYLER, E. K., 1956, J .  chem. Phys., 24, 1139. 
BLOEMBERGEN, N., and ZEWAIL, A. H., 1984, J .  chem. Phys., 88, 1984. 
BUTLER, L. J., HINTSA, E. J., and LEE, Y. T., 1986, J .  chem. Phys., 84,4104. 
CAFFAREL, M., CLAVERIE, P., MIJOULE, C., ANDZELM, J., and SALAHUB, D. R., 1989, J .  chem. Phys., 

CARNEY, G. D., SPRANDEL, L. L., and KERN, C. W., 1978, Ado. chem. Phys., 37, 305. 
CARNEY, G. D., and PORTER, R. N., 1974, J .  chem. Phys., 60,4251. 
CARRINGTON, T., 1987, J .  chem. Phys., 86,2207. 
CARTER, S., and HANDY, N. C., 1984, Molec. Phys., 53, 1033; 1986, Ibid., 57, 175; 1987, J .  chem. 

Phys., 87,4294; 1988, Comput. Phys. Commun., 51,49. 
CERTAIN, P. R., and MOISEYEV, N., 1987, J .  chem. Phys., 86,2146. 
CHILD, M. S., and HAMNEN, L., 1985, Ado. chem. Phys., 57, 1. 
COOLIDGE, A. S., J m ,  H. M., and VERNON, E. L., 1938, Phys. Rev., 54, 726. 
COOPER, I. L., 1987, Chem. Phys., 112, 1019. 
CRLM, F. F., 1984, Ann. Rev. phys. Chem., 35, 657. 
CROPEK, D., and CARNEY, G. D., 1984, J .  chem. Phys., 80,4280. 
DARLING, B. T., and DENNISON, D. M., 1940, Phys. Rev., 57, 128. 
DRAGT, A. J., and FINN, J. M., 1976, J .  math. Phys., 17, 2215; 1983, Ibid., 24, 2734. 
ECKART, C., 1935, Phys. Rev., 47, 552. 
EFREMOV, Y. S., and ZHIRNOV, N. I., 1980, Optika Spectrosk., 49, 612. 
EZRA, G. S., MARTENS, C. C., and FRIED, L. E., 1987, J .  phys. Chem., 91, 3721. 
FRIED, L., and EZRA, G., 1987, J .  chem. Phys., 86,6270; 1988, J .  phys. Chem., 92, 3144, 1989, J .  

GREEN, W. H., LAWRANCE, W. D., and MOORE, C. B., 1987, J .  chem. Phys., 86, 6000. 
GRISOV, L. A., and KHOVRIN, G. V., 1975, Soviet Phys. Dokl., 19,435. 
HALONEN, L., and CARRINGTON, T., 1988, J .  chem. Phys., 88,4171. 
HALONEN, L., 1989, J .  phys. Chem., 93, 3386. 
HAMILTON, I. P., and LIGHT, J. C., 1986, J .  chem. Phys., 84, 306. 
HANDY, N. C., 1987, Molec. Phys., 61, 207. 

90, 990. 

chem. Phys., 90, 6378. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
4
5
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



Highly vibrationally excited molecules 27 

HARDING, L. B., and ERMLER, W. C., 1985, J. comput. Chem., 6 ,  13. 
HARRIS, D. O., ENGERHOLM, G. O., and GWINN, W., 1965, J. chem. Phys., 43, 1515. 
HAUB, J. G., and Om, B. J., 1987, J. chem. Phys., 86, 3380. 
HOY, A. R., MILLS, I. M., and STREY, G., 1972, Molec. Phys., 24, 1265. 
HUTSON, J. M., and JAIN, S., 1989, J. chem. Phys., 91, 4197. 
IUNG, C., and LEFORESTIER, C., 1989, J. chem. Phys., 90, 3198. 
JAFFE, C., and REINHARDT, W. P., 1979, J. chem. Phys., 71, 1862; 1982, Zbid., 77, 5191. 
JOHNSON, B. R., and REINHARDT, W. P., 1986, J. chem. Phys., 85,4538. 
KELLMAN, M. E., 1985, J. chem. Phys., 85, 3843. 
KEMBLE, E. C., 1937, The Fundamental Principles of Quantum Mechanics (New York: McGraw- 

KING, D. S., 1982, Adv. chem. Phys., 50, 105. 
LAI, E. K. C., 1975, Master’s Thesis, Department of Chemistry, Indiana University, 

LEHMANN, K. K., 1983, J. chem. Phys., 79, 1098. 
LEVINE, R. D., and BERRY, R. S., 1989, J .  chem. Phys., 90, 2071. 
McCoy, A. B., and SIBERT, E. L., 1990, J. chem. Phys., 92, 1893. 
McCoy, A. B., and SIBERT, E. L., Adv. molec. Vibrations (to be published). 
MCILROY, A., and NFSBITT, D., 1989, J. chem. Phys., 91, 104. 
MAESSEN, B., and WOLPSBERG, M., 1984, J. chem. Phys., 80,4651. 
MEYER, R., and GUNTHARD, Hs. H., 1968, J. chem. Phys., 49, 1510. 
MILLS, I. M., and ROBIETTE, A. G., 1985, Molec. Phys., 56, 743. 
MOISEYEV, N., and CERTAIN, P. R., Madison Wisconsin preprint WIS-TC1-749. 
MURRELL, J. N., CARTER, S., FARANTOS, S. C., HUXLET, P., and VARANDAS, A. J. C., 1984, 

NIELSEN, H. H., 1951, Rev. mod. Phys., 23, 90. 
PARSON, R., 1989, J .  chem. Phys., 91, 2206. 
PICKETT, H. M., 1972, J. chem. Phys., 56, 1715. 
POWLSKI, B., 1928, Phys. Rev., 32, 812. 
QUACK, M., 1982, Adv. chem. Phys., 50, 395. 
RATNER, M. A., and GERBER, R. B., 1986, J. phys. Chem., 90,20. 
REINHARDT, W. P., 1989, Adu. chem. Phys., 73,925. 
ROBINSON, P. J., and HOLBROOK, K. A., 1972, Unimolecular Reactions (New York: Wiley). 
ROMANOWSKI, H., and BOWMAN, J. M., 1984, Chem. phys. Lett., 110, 235. 
ROMANOWSKI, H., BOWMAN, J. M., and HARDING, L. B., 1985, J. chem. Phys., 82,4155. 
SAGE, M. L., and CHILD, M. S., 1989, J. chem. Phys., 90,7257. 
SAGE, M. L., and JORTNER, J., 1981, Adv. chem. Phys., 47, 293. 
SAGE, M. L., and WILLIAMS, J. A., 1983, J. chem. Phys., 78, 1348. 
SCHWENKE, D. W., and -mum, D. G., 1984, Comput. Phys. Commun., 34, 57. 
SHIRTS, R. B., and REINHARDT, W. P., 1982, J. chem. Phys., 77, 5204. 
SIBERT, E. L., 1986, Chem. phys. Lett., 128,404; 1988a, Comput. Phys. Commun., 51,149; 1988b, 

SIMONS, G., PARR, R. G., and FINLAN, J. M., 1973, J. chem. Phys., 59, 3229. 
SKODJE, R. T., and CARY, J. R., 1988, Comp. Phys. Rep., 8, 223. 
SUTCLIFFE, B. T., 1982, Current Aspects of Quantum Chemistry, edited by R. Carbo (Amsterdam: 

SUTCLIFFE, B. T., TENNYSON, J., and MILLER, S., 1987, Theor. chim. Acta, 72, 265. 
SWIMM, R. T., and DELOS, J. B., 1979, J. chem. Phys., 71, 1706. 
TANAKA, Y., and MACHIDA, K., 1977, J. molec. Spectrosc., 64, 429. 
TENNYSON, J., and HENDERSON, J. R., 1989, J. chem. Phys., 91, 3815. 
TENWYSON, J., and SUTCLIFFE, B. T., 1986, Molec. Phys., 58, 1067. 
WALLACE, R., 1975, Chem. Phys., 11, 189. 
WATSON, J. K. G., 1968, Molec. Phys., 15, 479. 
WHITEHEAD, R. J., and HANDY, N. C., 1975, J. molec. Spectrosc., 55, 356; 1976, Ibid., 59, 459. 
WHITNELL, R. M., and LIGHT, J. C., 1989, J. chem. Phys., 90, 1774. 
WILSON, E. R., JR, and HOWARD, J. B., 1936, J. chem. Phys., 4,260. 
WILSON, E. B., JR, DECIUS, J. C., and CROSS, P. C., 1955, Molecular Vibrations (New York: 

WYATT, R. E., 1989, Adu. chem. Phys., 73, 231. 

Hill), p. 394. 

Bloomington. 

Molecular Potential Energy Functions (New York: Wiley). 

J .  chem. Phys., 88, 4378; 1989, Ibid., 90, 2672. 

Elsevier); 1983, Molec. Phys., 48, 561. 

McGraw-Hill), pp. 305-306. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
4
5
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1


